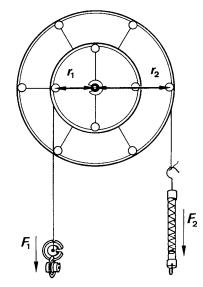

Gruppe:

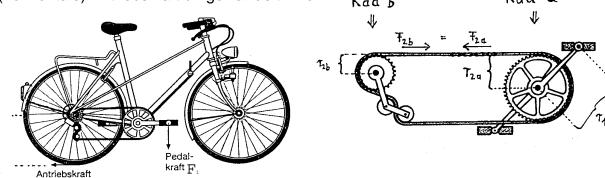
Gangschaltung beim Fahrrad



- Baue die Versuchsanordnung gemäß nebenstehender Skizze auf.
- Hänge ein Laststück mit der Angelschnur an die kleine Rolle.
- Verbinde die kleine und große Rolle mit einem Kopplungsstift (1).
- Stecke einen kleinen Metallstift (2) als Kurbel an die große Rolle.

Hänge den Kraftmesser an die Kurbel und messe die Kraft F₂, die benötigt wird, um 1, 2, 3 Laststücke (0,5 N, 1,0 N, 1,5 N) mit dem kleinen Rad anzuheben (Abbildung rechts).

Bestimme die Länge des Lastarms (Radius r₁) und die des Kraftarmes (Radius r₂).


Vervollständige die Tabelle:

Last	F ₁	Z	0,5	1,0	1,5
Lastarm	r ₁	cm			
Drehmoment	F ₁ *r ₁	N cm			

Kraft	F ₂	N		
Kraftarm	r_2	cm		
Drehmoment	$F_2 * r_2$	N cm		

Miss die Radien r_1 (Pedallänge), r_{2a} und r_{2b} (Radien der Zahnräder) und r_3 (Hinterrad) deines Fahrrades und beantworte mit Hilfe der Drehmomente, welcher Anteil der Pedalkraft in (horizontale) Antriebskraft umgewandelt wird. Rad a

